
0018-9162/00/$10.00 © 2000 IEEE July 2000 1

R E S E A R C H F E A T U R E

How Perspective-Based
Reading Can Improve
Requirements
Inspections

B
ecause defects constitute an unavoidable
aspect of software development, discovering
and removing them early is crucial.
Overlooked defects (like faults in the soft-
ware system requirements, design, or code)

propagate to subsequent development phases, and
detecting and correcting them becomes more difficult.1

At best, developers will eventually catch the defects,
but at the expense of schedule delays and additional
product-development costs. At worst, the defects will
remain, and customers will receive a faulty product.

Providing complete, consistent, unambiguous, and
correct documents throughout the lifecycle improves
the chances for a higher-quality software system.
Therefore, checking software documents for defects
before proceeding to the next development phase con-
tributes to overall system quality. An inspection by qual-
ified personnel is the best way to accomplish this. Robert
Glass stated that “inspections, by all accounts, do a bet-
ter job of error-removal than any competing technol-
ogy (that is, inspections tend to find more errors), and
they do it at a lower cost (the cost per error found is
lower)”.2 Most published work shows that inspections
are both effective and efficient.3 In particular, inspec-
tions in the requirements specification phase4,5 can catch
inconsistent or incorrect requirements for the system
before they form the basis for design or implementa-
tion, which would necessitate rework.

Perspective-based reading provides a set of proce-
dures that can help developers solve software require-
ments inspection problems. PBR reviewers stand in for

specific stakeholders in the document (such as design-
ers or testers) to verify the quality of requirements
specifications. A PBR review ensures that requirements
are sufficient to support all the necessary later stages
of software development. PBR offers several benefits
compared with other inspection approaches, and
development organizations can customize PBR to fit
their needs.

TECHNIQUES FOR IMPROVING INSPECTIONS
Proper inspection implementation requires an accu-

rate understanding of the related tasks and organiza-
tion contexts and of the roles of those conducting the
inspection.5 Usually, the inspection process has several
phases: planning, overview, defect detection, defect
collection, defect correction, and follow-up.

The defect detection phase is the most significant.
Reviewers (typically software developers) read a soft-
ware document and apply some technique (formal or
informal) to uncover defects. The “Techniques for
Reading Requirements Documents” sidebar provides
a brief comparative description of techniques review-
ers can use to read requirements documents.

A complete description of inspections must address
five dimensions:3

• technical
• managerial
• organizational
• assessment
• tool support

Perspective-based reading gives developers a set of procedures to inspect
software products for defects. Detecting and correcting these defects
early in the development process can save a lot of time and money, and
possibly avoid some embarrassment.

Forrest Shull
Ioana Rus
Victor Basili
Fraunhofer
Center for
Experimental
Software
Engineering,
Maryland

2 Computer

Choosing to focus on organizational aspects such
as the number of participants and the structure and
frequency of meetings, many publications6,7 have
neglected the technical dimension—the review tech-
niques and how reviewers actually use them.

However, technical considerations are important,
and significant problems in this area need attention.
While reviewers may know how to write software
documents, they may have little expertise in reading
them. Reviewers typically rely on ad hoc reading tech-
niques, with no well-defined procedure, learning
largely by doing and gaining significant expertise only
gradually. The difficulty in providing training for a
poorly defined or undefined process such as an ad hoc
review further compounds the problem. For large
software projects, improving the review process
requires understanding what defects escaped the
review and targeting them more effectively. Letting
every reviewer develop a review process makes the
communication of effective review strategies more
difficult, hampering the widespread dissemination of
developed expertise.

A software reading technique provides a concrete
set of instructions that explain how to read a software
document and what a reviewer should look for.5

Reviewers can use these guidelines during the inspec-
tion’s preparation phase to examine a given software
document for defects. Rather than leaving reviewers
to their own devices, as in ad hoc reviews, software
reading techniques collect knowledge about best prac-
tices for defect detection into a single procedure.

Researchers at the Experimental Software Eng-
ineering Group at the University of Maryland, College
Park created PBR to provide a set of software reading
techniques for finding defects in English-language
requirements documents. Widely applicable and cus-
tomizable to particular situations, PBR is not strictly
formalized into a definitive set of procedures. Rather,
using PBR entails

• selecting a set of perspectives for reviewing the
requirements document;

• creating or tailoring procedures for each per-
spective usable for building a model of the rele-
vant requirements information;

• augmenting each procedure with questions for
finding defects while creating the model; and

• applying the procedures to review the document.

PBR OVERVIEW
PBR helps reviewers answer two important ques-

tions about the requirements they inspect: What infor-
mation in these requirements should they check? How
do they identify defects in that information?

Most inspection techniques do not help the reader
focus on a particular aspect of the document. They
treat all requirements information as equally impor-
tant because it all represents real functional require-
ments and constraints on that functionality. But then
document reviewers end up with ill-defined respon-
sibilities for finding all types of defects in the entire
document.

Several techniques exist for individually reviewing require-
ments documents. At one extreme is the ad hoc review, a review
with no formal, systematic procedure, based only on individual
experience. A checklist review makes the inspection process
slightly better-defined by providing reviewers with a list of items
on which to focus. Defect-Based Reading (DBR) provides a set
of systematic procedures that reviewers can follow, which are
tailored to the formal Software Cost Reduction (SCR) notation.
Like DBR, Perspective-Based Reading (PBR) is a scenario-based
technique that provides procedural guidance, tailored to require-
ments expressed in natural language (for example, English).

Table A presents some characteristics of these techniques.
We present the requirements languages for which each tech-

nique is usable and compare them according to the following
criteria:

• Systematic. Are the specific steps of the individual review
process definable?

• Focused. Must different reviewers focus on different aspects
of the document?

• Allows controlled improvement. Based on feedback, can
reviewers identify and improve specific aspects of the technique?

• Customizable. Can reviewers customize the technique to a
specific project or organization?

• Allows training. Can reviewers use a set of steps to train
themselves in applying the technique?

Requirements Controlled
Technique language Systematic? Focused? improvement? Customizable? Training?

Ad hoc Any No No No No No
Checklist Any Partially No Partially Yes Partially
Defect- based Software cost
reading reduction

(formal notation) Yes Yes Yes Yes Yes
Perspective- Natural
based reading language Yes Yes Yes Yes Yes

Techniques for Reading Requirements Documents

Table A. Characteristics of requirements reading technique.

July 2000 3

Different perspectives
PBR operates under the premise that different infor-

mation in the requirements is more or less important
for the different uses of the document. Many different
people use a requirements document to support tasks
throughout the development life cycle. Conceivably,
each person finds different aspects of the requirements
important for accomplishing a particular task.
Therefore, PBR provides a set of individual reviews,
each from a particular requirements user’s point of view,
that collectively cover the document’s relevant aspects.

PBR requires identifying the users of a specific soft-
ware artifact (here, the requirements). This process is
similar to constructing system use cases, which
requires identifying who will use the system and in
what way. This selection of users varies according to
organization or project needs. In our environment, we
identified three major uses of the requirements at later
stages of the life cycle:

• A description of the customer’s needs. The
requirements describe the set of functionality and
performance constraints that the final system must
meet.

• A basis for the system design. The system designer
must create a design that can function according
to the requirements and within the allowed con-
straints.

• A point of comparison for system test. The sys-
tem’s test plan must ensure that the software cor-
rectly implements functionality and performance
requirements.

These uses suggest perspectives for reviewing the
requirements document: The designer needs correct
requirements with sufficient detail for the major sys-
tem components under review. The tester, concerned
about requirements testability, needs to see sufficient
detail to construct test plans. The customer (or user) of
the system requires that the requirements completely
and correctly capture the necessary system function-
ality. A failure to satisfy any of these needs constitutes
a requirements defect—a deficiency in the requirements
quality that can hamper software development.

Other perspectives can lead to defect detection as
well; the examples we’ve given simply represent the
perspectives we’ve experienced. Depending on the
environment in which users apply PBR, they may find
a different set of perspectives more applicable. For
example, a system expected to have a long operational
life span could also be reviewed from a maintainer’s
perspective (which would be concerned with verify-
ing that requirements are easily extensible). Deciding
on the most appropriate set of perspectives is one way
of tailoring PBR to a particular environment.

Thus, in a PBR inspection, each reviewer on a team

assumes a specific user’s perspective. The
reviewer creates a high-level version of the work
products typical of what the user would nor-
mally produce. From the designer, tester, and
customer perspectives, the relevant work prod-
ucts would be a high-level system design, a sys-
tem test plan, and an enumeration of the
described functionality, respectively.

The objective is to avoid duplicating work
during the software development process by
creating representations of the system capable
of supporting two distinct types of activities.
First, reviewers can use the representations as a
basis for the later creation of more specific work
products. Second, reviewers use the represen-
tations to analyze how well the requirements
can support the necessary tasks.

An appropriate level of detail helps reviewers con-
struct the relevant system representations. Organizations
vary these levels to further tailor PBR. When used by
more experienced reviewers, the PBR procedures should
rely mainly on a reviewer’s previous experience in cre-
ating design plans, test plans, and user manuals.
Alternately, a reviewer can select a very specific type of
representation for each perspective (for example, struc-
tured design, equivalence partitioning test plans, and
use cases, respectively), more specific procedures are
appropriate for less experienced reviewers.

Using different perspectives offers a number of ben-
eficial attributes:

• Systematic. Explicitly identifying the different
uses for the requirements gives reviewers a defi-
nite procedure for verifying whether those uses
are achievable.

• Focused. PBR helps reviewers concentrate more
effectively on certain types of defects, rather than
having to look for all possible types. A study of
PBR’s effectiveness5 showed that this additional
focus helped reviewers find more defects than if
they used a less structured approach, even though
they were concentrating on specific aspects of the
document while using PBR. One reviewer sum-
marized this benefit by saying, “It really helps to
have a perspective because it focuses my ques-
tions. I get confused trying to wear all the hats!”
Additionally, this focus helps avoid duplicated
effort among team members.

• Goal-oriented and customizable. Reviewers select
the perspectives used by PBR to reflect the
requirements’ uses. In a new organization, the
perspectives change to reflect how that organi-
zation uses its requirements documents and the
inspection’s specific goals. Because each perspec-
tive gives a specific procedure, reviewers can tai-
lor the procedure to the organization’s needs. For

Because PBR works
from a definite

procedure, and not
the reviewer’s own

experience with
recognizing defects,
new reviewers can
receive training in

the procedure’s
steps.

4 Computer

example, the procedure can be more or less spe-
cific based on the reviewers’ expertise.

• Transferable via training. Because PBR works
from a definite procedure, and not the reviewer’s
own experience with recognizing defects, new
reviewers can receive training in the procedure’s
steps. Additionally, because PBR uses work prod-
ucts for other life-cycle stages, reviewers can
apply their training and experience to tasks that
may seem more natural to them.

Identifying defects
Once reviewers have created relevant representa-

tions of the requirements, they still need to determine
what defects may exist. PBR techniques provide ques-
tions tailored to each step of the procedure for creat-
ing the representation. As the reviewers construct the
representation, they answer a series of questions about
the work products. Requirements that do not provide
enough information to answer the questions usually
do not provide enough information to support the
user. Thus, reviewers can identify and fix defects
beforehand, so that requirements are ready to support
that task later in the product life cycle.

We defined a taxonomy of requirements defects to
assure the sufficiency of the questions at each phase,
and we developed the PBR questions to detect each
type of defect. We based this taxonomy on the IEEE
definition of necessary attributes of good requirements
documents,8 and our definition is similar to others that
help track requirements defects.9 Table 1 lists the types
of defects that PBR helps detect. In practice, these clas-

sifications are not orthogonal; a given defect could
conceivably fit into more than one category, depend-
ing on the interpretation of the classifier. Nor is this
taxonomy definitive; an organization can add other
categories, depending on its needs.

The sidebar, “A Sample PBR Procedure,” presents
an example of how a tester uses the PBR procedure.
(We provide additional instantiations for other per-
spectives at http://fc-md.umd.edu/reading/reading.
html.) This example includes a series of questions tai-
lored to each step of the procedure for developing an
equivalence-partitioning test plan. For example, Part
b includes guidelines for identifying test cases for
each equivalence set. A series of questions check for
missing information (Qb.1), ambiguous information
(Qb.2), inconsistencies between requirements (Qb.3),
and incorrect facts (Qb.4). The question list does not
include defects of extraneous information or other
miscellaneous reasons (such as document structure)
because we did not think them relevant for this step.

Overall, PBR’s detailed questions have the follow-
ing benefits:

• Allow controlled improvement: Reviewers can
reword, add, or delete specific questions.

• Allow training: Reviewers can train to better
understand the parts of a representation or work
product that correspond to particular questions.

APPLYING PBR
PBR does not predicate a specific format for the

requirements. We tailored it to requirements that use

For each requirement, generate a test or set of test cases that let
you ensure that a system implementation satisfies the requirement.
Follow the procedure below to generate the test cases, using the
questions provided to identify faults in the requirements.

General questions
Read each requirement once and record the number and page

on the form provided, along with the inputs to the requirement.

• Q1. Does the requirement make sense from what you know
about the application or from what is specified in the gen-
eral description?

• Q2. Do you have all the information necessary to identify
the inputs to the requirement? Based on the general require-
ments and your domain knowledge, are these inputs correct
for this requirement?

• Q3. Have any of the necessary inputs been omitted?
• Q4. Are any inputs specified that are not needed for this

requirement?

• Q5. Is this requirement in the appropriate section of the doc-
ument?

Part a: Building equivalence sets.
For each input, divide the input domain into sets of data (called

equivalence sets); all values in each set will cause the system to
behave similarly. Determine the equivalence sets for a particular
input by understanding the sets of conditions that affect the
requirement’s behavior. You may find it helpful to keep the fol-
lowing guidelines in mind when creating equivalence classes:

• If an input condition specifies a range, at least one valid (the
set of values in the range) and two invalid equivalence sets
(the set of values less than the lowest extreme of the range,
and the set of values greater than the largest extreme) are
defined.

• If an input condition specifies a set’s member, at least one
valid (the set itself) and one invalid equivalence set (the valid
set’s complement) is defined.

A Sample PBR Procedure

English (or some other natural language) to describe
the system functionality, but users could easily tailor
it to suit a formal requirements specification language,
such as Software Cost Reduction.

Building on experience
PBR does not assume that developers already possess

the skills for effectively analyzing requirements docu-
ments. Rather, PBR helps developers build on their expe-
rience in other phases of software development, letting
them use skills they already have (such as for creating
designs, test plans, or user manuals) to help them better
understand requirements documents. Thus, some
reviewers (especially less experienced ones) may find that
PBR appears to be a more natural approach to review-
ing requirements than other methods, such as checklists.

For this reason, PBR’s usefulness may lie in how it trains
inexperienced reviewers. Of course, reviewers must at
least have some experience or training with the tech-
niques for creating the relevant work products they’ll
have to apply (such as creating test plans).

An organizational culture accustomed to performing
reviews is useful for effective application of PBR. Novice
reviewers who have no experience with looking for
defects are not used to thinking about the effect of faulty
requirements on later stages of the life cycle. Therefore,
conveying to novice reviewers the importance of pro-
viding a definition of a requirements defect sufficiently
detailed for identification is difficult. PBR attempts to
provide guidelines in this area, and it uses the defect tax-
onomy to flag problem areas for reviewers. But review-
ers still need to build up their experience in this area.

July 2000 5

Table 1. Requirements defects that PBR helps detect.
Missing information Any significant requirement related to functionality, perfor-

mance, design constraints, attributes, or external interface
not included

Undefined software responses to all realizable classes of input
data in all realizable classes of situations

Sections of the requirements document
Figure labels and references, tables, and diagrams
Definitions of terms and units of measure

Ambiguous information Multiple interpretations caused by using multiple terms for the
same characteristic or multiple meanings of a term in a par-
ticular context

Inconsistent information Two or more requirements that conflict with one another
Incorrect fact A requirement-asserted fact that cannot be true under the con-

ditions specified for the system.
Extraneous information Unnecessary or unused information (at best, it is irrelevant; at

worst, it may confuse requirements users)
Miscellaneous defects Other errors, such as including a requirement in the wrong

section

• If an input condition requires a specific value, then one valid
(the set containing the value itself) and two invalid equiva-
lence sets (the set of values less than and the set greater than
the value) are defined.

Each equivalence set should be recorded in the spaces provided
on the form under the appropriate input.

• Qa.1. Do you have enough information to construct the
equivalence sets for each input? Can you specify the bound-
aries of the sets at an appropriate level of detail?

• Qa.2. According to the information in the requirements, are
the sets constructed so that no value appears in more than
one set?

• Qa.3. Do the requirements state that a particular value
should appear in more than one equivalence set (that is, do
they specify more than one type of response for the same
value)? Do the requirements specify that a value should
appear in the wrong equivalence set?

Part b: Testing equivalence sets.
For each equivalence set, write test cases, and record them beneath

the associated equivalence set on the form. Select typical test cases as
well as values at and near the boundaries of the sets. For example, if
the requirement expects input values in the 0 to 100 range, the test
cases selected might be 0, 1, 56, 99, and 100. Finally, for each equiv-
alence set, record the expected resulting behavior (that is, how do
you expect the system to respond to the test cases you just made up?)

• Qb.1. Do you have enough information to create test cases
for each equivalence set?

• Qb.2. Are there other interpretations of this requirement that
the implementer might make on the basis of the description
given? Will this affect the tests you generate?

• Qb.3. Is there another requirement for which you would gen-
erate a similar test case but would get a contradictory result?

• Qb.4. Can you be sure that the tests generated will yield the
correct values in the correct units? Is the resulting behavior
specified appropriately?

6 Computer

Having reviews in place also means that an orga-
nization has probably already dealt with the dif-
ficulties inherent in reviews themselves, such as
motivating reviewers to perform satisfactory
reviews and scheduling team meetings as part of
the development cycle.

Perhaps the most serious constraint on the
use of PBR is the amount of reviewer effort
required. The improved rate of defect detection
comes at the price of a higher amount of effort
on the part of the reviewers. For example, in a
study of software professionals,5 the average
review time required for PBR ranged from
almost the same as for the professionals’ usual
approach to 30 percent more, depending on the
document being reviewed. However, much of

this extra effort actually produces the high-level rep-
resentations of the system that may save effort at later
stages of the life cycle. For example, the high-level test
plan developed during PBR can serve as the basis for
the actual test plan used to evaluate the implementa-
tion.

Lessons learned
Researchers in the U.S.,10 Norway,11 and Germany12

have conducted studies using more than 150 software
engineering students in university classes to evaluate
and evolve PBR techniques. These students range from
undergraduates with little previous review experience
to professionals with more than 20 years experience
in industry who were returning for advanced degrees.
In 1995 and 1996, researchers from the Experimental
Software Engineering Group ran studies using 25 pro-
fessional developers from the NASA Goddard Space
Flight Center.5 These developers first applied the
requirements review technique they used at NASA, and
then were trained in PBR and applied the new tech-
nique to a similar requirements document. In this way,
the researchers could assess how well these profes-
sionals performed using PBR compared with how they
performed using their usual review technique.

These studies supported the notion that PBR leads
to improved defect detection rates for both individual
reviewers and review teams working with unfamiliar
application domains. These studies also showed that,
for a familiar application domain, experienced review-
ers sometimes ignore the PBR procedure and revert to
using previously acquired heuristics. Training and
reinforcement can overcome this tendency.

By observing the use of PBR in varied environments
by several reviewers, these studies also helped
researchers better understand the effects of PBR in dif-
ferent contexts and for different types of users. For
example, PBR seems best suited for reviewers with a
certain range of experience. Reviewers who have pre-
viously inspected requirements documents on multi-

ple industrial projects have, over time, typically devel-
oped their own approaches and do not benefit signif-
icantly from the introduction of PBR. Reviewers who
have little experience (those who have never trained,
or have trained but never applied their skills on a real
project) with the relevant representations (such as
designs or test plans) need to receive sufficient train-
ing before they can effectively apply PBR.10 This train-
ing seems necessary so that the difficulties of creating
the representation of the system do not distract from
the process of checking for defects.

P BR provides a framework that represents an
improved approach for conducting require-
ments reviews. However, such an approach will

only be effective when an organization tailors the
framework to its own needs and uses feedback from
its reviewers to continually improve and refine the
techniques.

Studies have shown that development teams that
use PBR to inspect requirements documents tend to
detect more defects than they do using other, less struc-
tured approaches. Although PBR requires more effort,
it offers a number of advantages compared with cur-
rent practices. Relatively novice reviewers can use PBR
techniques to apply their expertise in other develop-
ment tasks to defect detection. Using PBR improves
team meetings by helping team members build up
expertise in different aspects of a requirements docu-
ment. It creates high-level representations of the soft-
ware system, usable as a basis for work products in
later stages of development. Each development orga-
nization can customize PBR’s set of perspectives, level
of detail, and types of questions. PBR facilitates con-
trolled improvement, providing a definite procedure,
alterable according to project metrics and reviewer
feedback. ✹

References
1. J.C. Kelly, J.S. Sherif, and J. Hops, “An Analysis of

Defect Densities Found During Software Inspections,”
J. Systems Software, Feb. 1992, pp. 111-117.

2. R.L. Glass, “Inspections—Some Surprising Findings,”
Comm. ACM, Apr. 1999, pp. 17-19.

3. O. Laitenberger and J. DeBaud, An Encompassing Life-
Cycle Centric Survey of Software Inspection, Tech.
Report No. ISERN-98-32, Fraunhofer Inst. Experimen-
tal Software Eng., Kaiserslautern, Germany, 1998;
http://www.iese.fhg.de/network/ISERN/pub/technical_
reports/isern-98-32.pdf.

4. A. Porter, L. Votta Jr., and V. Basili, “Comparing Detec-
tion Methods for Software Requirements Inspections: A
Replicated Experiment,” IEEE Trans. Software Eng.,
June 1995, pp. 563-575.

5. V. Basili et al., “The Empirical Investigation of Perspec-

PBR leads to
improved defect

detection rates for
both individual
reviewers and
review teams
working with

unfamiliar
application
domains.

tive-Based Reading,” Empirical Software Eng.: An Int’l
J., Vol. 1, No. 2, 1996, pp. 133-164

6. M. Fagan, “Advances in Software Inspections,” IEEE
Trans. Software Eng., July 1986, pp. 744-751.

7. T. Gilb and D. Graham, Software Inspection, Addison-
Wesley Longman, Reading, Mass., 1993.

8. IEEE Guide to Software Requirements Specifications,
ANSI/IEEE Standard 830-1984, IEEE Press, Piscataway,
N.J., 1984.

9. V. Basili and D. Weiss, “Evaluation of the A-7 Require-
ments Document by Analysis of Change Data,” Proc.
5th Int’l Conf. Software Eng., IEEE, CS Press, Los
Alamitos, Calif., Mar. 1981, pp. 314-323.

10. F. Shull, Developing Techniques for Using Software Doc-
uments: A Series of Empirical Studies, doctoral disser-
tation, Computer Science Dept., Univ. of Maryland,
1998; http://www.cs.umd.edu/projects/SoftEng/ESEG/
papers/postscript/shull_diss.ps.gz.

11. S. Sørumgård, Verification of Process Conformance in
Empirical Studies of Software Development, doctoral
dissertation, Dept. Computer and Information Science,
Norwegian Univ. of Science and Technology, Trondheim,
Norway, 1997; http://www.idt.unit.no/~sivert/ps/
Thesis.ps.

12. M. Ciolkowski et al., Empirical Investigation of Per-
spective-based Reading: A Replicated Experiment,
Tech. Report No. ISERN-97-13, Int’l Software Eng.
Research Network, Kaiserslautern, Germany, 1997; http://
www.iese.fhg.de/network/ISERN/pub/technical_reports/
isern-97-13.pdf.

Forrest Shull is a scientist for the Fraunhofer Center
for Experimental Software Engineering, Maryland.
His research interests include software process
improvement, empirical software engineering, and
software inspections. He received a PhD in computer
science from the University of Maryland, College
Park. Contact him at fshull@fc-md.umd.edu.

Ioana Rus is a scientist for the Fraunhofer Center for
Experimental Software Engineering, Maryland. Her
research interests include software process improve-
ment, modeling and simulation, measurement and
experimentation in software engineering, and artifi-
cial intelligence. She received a PhD in computer sci-
ence and engineering from Arizona State University.
Contact her at irus@fc-md.umd.edu.

Victor Basili is Executive Director of the Fraunhofer
Center for Experimental Software Engineering and a
professor in the Institute for Advanced Computer
Studies and the Computer Sciences Department at the
University of Maryland. His research interests include
experimental software engineering and software qual-
ity assurance. He is a member of the IEEE and ACM
Fellow. Contact him at basili@fc-md.umd.edu.

July 2000 7

8 Computer

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX

July 2000 9

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX

